Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonjus, Delft. The Netherlands.

Henke, W., Kremer, S. & Reinen, D. (1983). Inorg. Chem. 22, 2858– 2863.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Spek, A. L. (1990). Acta Cryst. A46, C-34.

Acta Cryst. (1999). C55, 733-739

Salts of the bis(catecholato)borate anion with rhodium– and iridium–phosphine complex cations

WILLIAM CLEGG,^{*a*} MARK R. J. ELSEGOOD,^{*a*} ANDREW J. SCOTT,^{*a*} TODD B. MARDER,^{*b*} CHAOYANG DAI,^{*c*} NICHOLAS C. NORMAN,^{*d*} NIGEL L. PICKETT^{*d*} AND EDWARD G. ROBINS^{*d*}

^aDepartment of Chemistry, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, England, ^bDepartment of Chemistry, University of Durham, South Road, Durham DH1 3LE, England, ^cDepartment of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1, and ^dSchool of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, England. E-mail: w.clegg@ncl.ac.uk

(Received 24 November 1998; accepted 6 January 1999)

Abstract

In a series of five salts with rhodium- or iridiumphosphine complex cations {*cis*-chlorohydridotetrakis-(triethylphosphine) iridium (III) bis (pyrocatecholato -(O,O') borate, [IrClH(C₆H₁₅P)₄](C₁₂H₈BO₄), (1); transchlorobis[ethylenebis(diphenylphosphine)]hydridorhodium (III) bis (pyrocatecholato -O, O') borate dichloromethane solvate, $[RhClH(C_{26}H_{24}P_2)_2](C_{12}H_8BO_4)\cdot CH_2$ -Cl₂, (2); *trans*-chlorobis[ethylenebis(dicyclohexylphosphine)]hydridorhodium(III) bis(pyrocatecholato- $O_{\cdot}O'$)borate tetrakis(dichloromethane) solvate, [RhClH(C26- $H_{48}P_2$)₂](C₁₂H₈BO₄)·4CH₂Cl₂, (3); tetrakis(trimethylphosphine)rhodium(I) bis(pyrocatecholato-O, O')borate, $[Rh(C_3H_9P)_4](C_{12}H_8BO_4), (4);$ and *cis*-dihydridotetrakis-(trimethylphosphine)rhodium(III) bis(pyrocatecholato -O,O')borate, [RhH₂(C₃H₉P)₄](C₁₂H₈BO₄), (5)}, the bis-(catecholato)borate anion has approximate D_{2d} (42m) symmetry, with the central spiro-B atom distorted from regular tetrahedral coordination geometry by reduction of the two intra-ring O-B-O bond angles. The two chelate rings show small deviations from planarity by

folding about the $O \cdots O$ axis. The hydrido and chloro ligands in the cation of compound (1), which has four monodentate phosphine ligands, are *cis* to each other, but in compounds (2) and (3), each with two chelating diphosphine ligands, they are mutually *trans*. The cation in compound (4) has only four phosphine ligands, which are arranged in a tetragonally distorted square-planar arrangement to minimise steric crowding. Its reaction product with molecular dihydrogen, compound (5), has a *cis* arrangement of the two hydrido ligands in a distorted octahedral cation. The strong *trans* influence of the hydrido ligands is reflected in lengthened bonds to the opposite ligands in each case.

Comment

We have previously reported the structures of a series of salts of the bis(catecholato)borate [bis(benzene-1,2diolato)borate] anion, $[B(cat)_2]^-$, with organic nitrogen and phosphorus cations (Clegg et al., 1998). This anion seems to be a favoured product in many reactions of catecholborane, HB(cat), and related compounds under a wide variety of conditions, and we have encountered it numerous times in studies of catalytic hydroboration and diboration reactions of $B_2(cat)_2$ and $B_2(cat)_3$, as well as HB(cat). Few crystal structures have been reported of salts of the $[B(cat)_2]^-$ anion with metal-centred cations and of metal complexes of the anion acting as a ligand (He & Hartwig, 1996; Westcott et al., 1991, 1993; Dai et al., 1998). We describe here five structures with iridiumand rhodium-phosphine complex cations, which have been obtained as part of a research programme in synthesis and homogeneous catalysis.

The geometry of the anion is essentially the same in all these structures, and does not differ significantly from that seen previously in its salts with a variety of cations (Clegg et al., 1998, and references therein). In each case, the B atom has a slightly elongated tetrahedral coordination geometry, with the two smallest O-B-O angles opposite each other within the two chelate rings. These rings are close to being planar, with r.m.s. deviations up to 0.045 Å; there is a slight folding about the $O \cdots O$ axis, with a dihedral angle ranging from 0.2 (4) to 11.4 (2)° between BO₂ and O_2C_2 planes (with r.m.s. deviations below 0.01 Å), such that the B atom becomes the flap of an envelope. This folding is only slight and follows no clear pattern in the various structures. Neglecting it, the anion has approximate D_{2d} $(\overline{4}2m)$ point-group symmetry, the two chelate rings being perpendicular within 2° in all cases. B-O bond lengths range from 1.468 (12) to 1.504 (13) Å, with a mean of 1.482 Å and a standard deviation of 0.010 Å.

All the cations in these compounds contain iridium or rhodium with four phosphine ligands (either monodentate phosphines, or diphosphines chelating through both P atoms). All but one [in compound (4)] also contain either one hydrido and one chloro ligand, or two hydrido ligands. All the hydrido ligands were located and freely refined. The Rh-H bond in (3) is unusually short at 1.27 (11) Å, compared with 1.578 (3) and 1.583 (3) Å given by Orpen et al. (1989), and 1.43 and 1.40 Å found for Rh—D by Nietlispach et al. (1993) by spectroscopic methods, but the difference from these latter values is not significant in view of the large uncertainty in the distance as measured by X-ray diffraction. There are no interactions between the cations and anions other than normal electrostatic attraction. This contrasts with previous reports, in which the anion bonds to titanium through two of its O atoms (He &

Hartwig, 1996) or is π -bonded to rhodium via one of the aromatic rings (Westcott *et al.*, 1991; Dai *et al.*, 1998).

The cation in compound (1) has Ir coordinated by hydrido and chloro ligands in a *cis* geometry in addition to the four triethylphosphine ligands. A similar *cis* arrangement has been found for several other Ir and Rh complexes with four phosphines, one hydrido and one other ligand (Thorn & Tulip, 1982; Milstein *et al.*, 1986; Marder *et al.*, 1987; Stevens *et al.*, 1990). The longest Ir—P bond lies opposite the hydrido ligand, and

Fig. 2. The molecular structure of compound (2), without the solvent molecule.

Fig. 1. The molecular structure of compound (1). In this and the other figures, displacement ellipsoids are shown at the 40% probability level, H atoms on phosphine ligands have been omitted, and a small number of unlabelled atoms have numbers which can be deduced from the others. Minor disorder components are not shown.

Fig. 3. The molecular structure of compound (3), without solvent molecules.

the shortest opposite chloro, as expected on the basis of the relative *trans* influence of these ligands. The steric bulk of the phosphines forces them apart, with a bond angle for the two mutually *cis* phosphines of 97.91 (5)° and an angle of $158.26 (5)^\circ$ between the two mutually *trans* phosphines, the angle between hydrido and chloro ligands being closed down to $84 (2)^\circ$.

Compounds (2) and (3) have very similar rhodiumcentred cations, each with two bidentate diphosphines of the same chelate ring size and bite angle [P—Rh—P angles of 82.80 (3) and 80.84 (3)° for (2), and 83.54 (7) and 82.10 (7)° for (3)]. In both cases, the hydrido and chloro ligands are mutually *trans*, in contrast to the *cis* arrangement in compound (1). All other similar reported complexes with chelating diphosphines also have a *trans* arrangement of one hydrido and one other non-hydrido ligand (Cowie & Dwight, 1979; Behr *et al.*, 1987). The phenyl-substituted diphosphine in compound (2) gives shorter Rh—P bonds than the cyclohexyl-substituted diphosphine in compound (3).

In compound (4), the rhodium(I) cation has only four phosphine ligands and no others. We have obtained this compound in a number of different reactions. It resulted from the reaction of [Rh(PMe₃)₄Me] with MeB(cat) in hexane solution, probably by methyl abstraction from the starting complex by the MeB(cat), followed by disproportionation of the resulting [Me₂B(cat)] to $[Me_4B]^-$ and $[B(cat)_2]^-$. A more rational and essentially quantitative synthesis involves the stoichiometric reaction of $[Rh(PMe_3)_4Me]$ with $B_2(cat)_3$, which gives only MeB(cat) as a by-product, as described in the *Experimental* section. Both compounds (4) and (5) are also formed as components of complex mixtures from reactions of $[Rh(PMe_3)_4H]$ with HB(cat) (Westcott et al., 1993). Comparison of the geometry of the cation in compound (4) here with that of the chloride salt reported by Jones et al. (1980) and the putative $cis-[Rh(PMe_3)_4(H)_2]^+$ cation in its benzenesolvated $[B(cat)_2]^-$ salt (Westcott *et al.*, 1993), together with the similar orange colour of all three compounds, shows that this last complex was actually $[Rh(PMe_3)_4]^+[B(cat)_2]^- \cdot C_6H_6$ (reductive elimination of dihydrogen having taken place), wrongly described (though not wrongly characterized crystallographically, since the hydrido ligands were not located) as the cisdihydrido complex. The Rh^I ion in compound (4) has a square-planar coodination geometry which is severely distorted towards tetrahedral because of the steric bulk of the ligands; bond angles between trans phosphines are 151.29(3) and 155.77(3)°. A similar arrangement has been found for other Rh¹ complexes with four monodentate phosphines (Clark et al., 1975, 1987; Jones et al., 1980; Lundquist et al., 1989; Reibenspies & Darensbourg, 1993). In one complex with substituted phosphabenzene rather than tertiary phosphine ligands. the distortion from square-planar geometry is only very small (Breit et al., 1997), while the cation with four bulky triphenylphosphine ligands lies so far along the distortion pathway that it is actually regular tetrahedral [this structure is in the Cambridge Structural Database (Allen & Kennard, 1993) with refcode KUYTUT; it was deposited as supplementary material for a paper by Burgess et al. (1992), but in the final publication this structure is not actually described or even mentioned].

Reaction of compound (4) with dihydrogen gas gives the authentic *cis*-dihydro complex (5), as has also been reported for the chloride salt (Jones *et al.*, 1980). The strong *trans* influence of the hydrido ligands is again reflected in the lengthening of the Rh—P bonds opposite Rh—H relative to the two mutually *trans* phosphines. Several other [Rh(PR₃)₄H₂]⁺ cations and iridium analogues, including some with two

Fig. 4. The molecular structure of compound (4).

Fig. 5. The molecular structure of compound (5), without minor disorder components.

chelating diphosphines rather than four monodentate phosphines, have been crystallographically characterized (Debaerdemaeker, 1977; Greenwood *et al.*, 1979; Behr *et al.*, 1986, 1987; Ferguson *et al.*, 1988; Brown *et al.*, 1989), and a *cis* arrangement of the hydrido ligands is found in every case.

Experimental

Compounds (1)-(4) were all prepared in reactions of transition metal complexes with either $B_2(cat)_2$ or $B_2(cat)_3$; hydrogenation of compound (4) led to compound (5). For compound (1), a solution of [IrCl(PEt₃)₃] (0.427 g, 0.73 mmol) in THF (1 ml) was added to solid $B_2(cat)_2$ (0.197 g, 0.82 mmol) with stirring, and the mixture was allowed to stand at room temperature for several days, giving crystals of compound (1) by slow solvent evaporation. Satisfactory NMR spectra were obtained, including a doublet of quartets (δ -13.24, J_{H-P} 140.3 and 18.2 Hz; 200 MHz operation, CD₂Cl₂ solvent) for the hydrido ligand; ${}^{31}P{}^{1}H{}$ (202.5 MHz, CD₂Cl₂): δ 27.3 (dt, P3, $J_{P3-P1/P2}$ 14.2 Hz, J_{P3-P4} 12.1 Hz), 29.9 (t, P1/P2, $J_{P1/P2-P3}$ and $J_{P1/P2-P4}$ 14.2 Hz), 37.0 (m, P4, J_{P3-P4} 12.1 Hz, $J_{P4-P1/P2}$ 14.2 Hz), with crystallographic atom numbering. For compound (2), $[{RhCl(PPh_3)_2}_2]$ (0.061 g, 0.05 mmol) and $B_2(cat)_2$ (0.024 g, 0.10 mmol) were dissolved in CH₂Cl₂ (2 ml) and the solution was stirred for 15 min. A solution of dppe (0.040 g, 0.10 mmol) in CH₂Cl₂ (1 ml) was added slowly by syringe, then a layer of hexanes (3 ml) was added. Solvent diffusion at 243 K over a period of several days afforded crystals of compound (2). Satisfactory NMR spectra were obtained, including a doublet of quintets (δ -16.04, $J_{\rm Rh-H}$ ~ $J_{P-H} = 13.0 \text{ Hz}$; 200 MHz, CDCl₃) for the hydrido ligand; ${}^{31}P{}^{1}H{}$ (36.45 MHz, CDCl₃): δ 52.6 (d, J_{Rh-P} 94 Hz). For compound (3), the same procedure was used as for compound (2), but with dcpe (0.042 g, 0.10 mmol) instead of dppe. The coupling for the hydrido ligand (at δ -16.80) was not resolved in the ¹H NMR spectrum; ${}^{31}P{}^{1}H{}$ (36.45 MHz, CDCl₃): δ 61.3 (d, J_{Rh-P} 90 Hz). For compound (4), a solution of [Rh(PMe₃)₄Me] (0.200 g, 0.474 mmol) in heptane (3 ml) was added dropwise with stirring to a solution of $B_2(cat)_3$ (0.164 g, 0.474 mmol) in heptane (100 ml) at 313 K. After stirring for 1 h at 313 K and 1 h at room temperature, the orange precipitate was collected by filtration, washed with toluene and then heptane, and recrystallized from THF to give crystals of compound (4). Satisfactory NMR spectra were obtained; ${}^{31}P{}^{1}H{}$ (81 MHz, CD₃CN): δ -14.3 (*d*, J_{Rh-P} 131.6 Hz). For compound (5), hydrogen gas was bubbled into a solution of compound (4) (0.100 g, 0.158 mmol) in THF (10 ml) for 10 min. Crystals were obtained by solvent diffusion of a layer of heptane (15 ml). Satisfactory NMR spectra were obtained, including a second-order splitting pattern which approximates to a doublet of quartets (δ -10.69, $J_{H-P(trans)} \sim 136.6 Hz$, $J_{H-P(cris)} \sim J_{H-Rh} \sim 14.8 Hz$) for the hydrido ligands (200 MHz, CD₃CN); ${}^{31}P{}^{1}H{}$ (81 MHz, CD₃CN): δ -11.0 [*dt*, 2P(*cis*), J_{Rh-P} 96.4 Hz, J_{P-P} 27.4 Hz], -22.4 [*dt*, 2P(*trans*), J_{Rh-P} 85.7 Hz, J_{P-P} 26.6 Hz].

Compound (1)

5755 reflections with

 $I > 2\sigma(I)$

Crystal data	
$[IrCIH(C_6H_{15}P)_4]_{-(C_{12}H_8BO_4)}$ $M_r = 928.25$ Monoclinic $P2_1/n$ a = 14.276 (3) Å b = 15.290 (3) Å c = 19.807 (4) Å $\beta = 102.36 (2)^\circ$ $V = 4223.3 (15) Å^3$ Z = 4 $D_3 = 1.460 \text{ Mg m}^{-3}$ D_m not measured	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å Cell parameters from 29 reflections $\theta = 11.64-12.52^{\circ}$ $\mu = 3.411$ mm ⁻¹ T = 298 (2) K Prism $0.78 \times 0.34 \times 0.31$ mm Colourless
Data collection	
Stoe–Siemens diffractometer ω/θ scans Absorption correction: multi-scan (Sheldrick, 1994) $T_{min} = 0.146, T_{max} = 0.347$ 8170 measured reflections 7421 independent reflections	$R_{int} = 0.051$ $\theta_{max} = 25.00^{\circ}$ $h = -16 \rightarrow 16$ $k = -12 \rightarrow 18$ $l = -20 \rightarrow 23$ 5 standard reflections frequency: 60 min intensity decay: 3%

Refinement

Refinement on F^2	$(\Delta/\sigma)_{\rm max} = 0.019$
$R[F^2 > 2\sigma(F^2)] = 0.029$	$\Delta \rho_{\rm max} = 0.961 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.080$	$\Delta \rho_{\rm min} = -1.130 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.020	Extinction correction:
7421 reflections	SHELXTL (Sheldrick,
464 parameters	1994)
H atoms treated by a	Extinction coefficient:
mixture of independent	0.00010 (9)
and constrained refinement	Scattering factors from
$w = 1/[\sigma^2(F_o^2) + (0.0447P)^2]$	International Tables for
+ 3.8148 <i>P</i>]	Crystallography (Vol. C)
where $P = (F_o^2 + 2F_c^2)/3$	

Table 1. Selected geometric parameters $(Å, \circ)$ for (1)

Ir—H1	1.52 (5)	Ir—Cl	2.4613 (13)
Ir—P3	2.2979 (12)	B—O1	1.470 (8)
Ir—P2	2.3712 (12)	B—O4	1.474 (9)
Ir—P1	2.3895 (14)	B—O3	1.479 (8)
Ir—P4	2.4439 (14)	B—O2	1.496 (8)
$\begin{array}{c} H1 - Ir - P3 \\ H1 - Ir - P2 \\ P3 - Ir - P2 \\ H1 - Ir - P1 \\ P3 - Ir - P1 \\ P2 - Ir - P1 \\ H1 - Ir - P4 \\ P3 - Ir - P4 \\ P2 - Ir - P4 \\ P1 - P4 \\ P1 - Ir - P4 \\ P1 -$	83 (2) 82 (2) 95.18 (4) 83 (2) 98.61 (5) 158.26 (5) 179 (2) 97.91 (5) 98.44 (5) 96.22 (5)	$\begin{array}{c} P3 - Ir - Cl \\ P2 - Ir - Cl \\ P1 - Ir - Cl \\ P4 - Ir - Cl \\ O1 - B - O3 \\ O1 - B - O3 \\ O4 - B - O3 \\ O1 - B - O2 \\ O4 - B - O2 \\ O3 - B - O2 \\ O3 - B - O2 \end{array}$	167.00 (5) 79.22 (5) 83.70 (5) 94.53 (5) 114.1 (5) 112.1 (5) 104.7 (5) 104.3 (6) 111.1 (5) 110.7 (5)

Compound (2)

Crystal data

 $[RhClH(C_{26}H_{24}P_2)_2]$ - $(C_{12}H_8BO_4) \cdot CH_2Cl_2$ $M_r = 1248.07$ Triclinic $P\overline{1}$ a = 12.5401 (8) Å b = 13.5374 (9) Å c = 16.9310 (11) Å $\alpha = 91.937 (2)^{\circ}$ $\beta = 97.051 (2)^{\circ}$ $\gamma = 90.121 \ (2)^{\circ}$ V = 2850.8 (3) Å³ Z = 2 $D_x = 1.454 \text{ Mg m}^{-3}$ D_m not measured

Data collection Bruker SMART CCD diffractometer ω rotation with narrow frames Absorption correction: multi-scan (SADABS; Sheldrick, 1997) $T_{\min} = 0.764, T_{\max} = 0.930$ 15 687 measured reflections 10982 independent reflections

Mo $K\alpha$ radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9820 reflections $\theta = 1.21 - 26.36^{\circ}$ $\mu = 0.602 \text{ mm}^{-1}$ T = 160 (2) KBlock $0.32 \times 0.20 \times 0.10$ mm Yellow

9431 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.030$ $\theta_{\rm max} = 26.38^{\circ}$ $h = -15 \rightarrow 14$ $k=-16 \rightarrow 11$ $l = -19 \rightarrow 21$ Intensity decay: none

Refinement

$w = 1/[\sigma^2(F_o^2) + (0.0119P)^2 + 7.2583P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.025$
$\Delta \rho_{\rm max} = 1.202 \ {\rm e} \ {\rm A}^{-3}$
$\Delta \rho_{\rm min} = -0.748 \ {\rm e} \ {\rm \AA}^{-3}$
Extinction correction: none
Scattering factors from
International Tables for
Crystallography (Vol. C)

Table 2. Selected geometric parameters $(Å, \circ)$ for (2)

	0	r	())) ()
Rh—H1	1.59 (5)	Rh-Cl1	2.4875 (9)
Rh—P4	2.3418 (9)	В—ОЗ	1.477 (5)
RhP3	2.3473 (9)	B—O1	1.482 (5)
Rh—PI	2.3484 (9)	BO2	1.483 (5)
Rh—P2	2.3675 (9)	B04	1.485 (5)
HI—Rh—P4	92 (2)	P4—Rh—C11	85.28 (3)
H1—Rh—P3	96 (2)	P3—Rh—Cl1	85.83 (3)
P4—Rh—P3	80.84 (3)	P1—Rh—C11	101.59 (3)
H1—Rh—P1	81 (2)	P2—Rh—C11	98.07 (3)
P4—Rh—PI	172.70(3)	O3—B—O1	110.5 (3)
P3—Rh—PI	97.06 (3)	O3—B—O2	113.2 (3)
HI—Rh—P2	80(2)	O1-B-O2	104.5 (3)
P4—Rh—P2	98.80(3)	O3—B—O4	104.8 (3)
P3—Rh—P2	176.05 (3)	Ol—B—O4	112.1 (3)
P1—Rh—P2	82.80(3)	O2-B-O4	112.0 (3)
H1—Rh—C11	177 (2)		

Compound (3)

Crystal data

 $[RhClH(C_{26}H_{48}P_2)_2]$ - $(C_{12}H_8BO_4) \cdot 4CH_2Cl_2$ $M_r = 1551.23$ Orthorhombic $P2_{1}2_{1}2_{1}$ a = 13.9320 (8) Å b = 21.2938 (10) Å c = 25.5613 (14) ÅV = 7583.1 (7) Å³ Z = 4 $D_x = 1.359 \text{ Mg m}^{-3}$ D_m not measured

Data collection

Bruker SMART CCD diffractometer ω rotation with narrow frames Absorption correction: multi-scan (SADABS; Sheldrick, 1997) $T_{\rm min} = 0.791, T_{\rm max} = 0.948$ 27 335 measured reflections 14 673 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.086$ $wR(F^2) = 0.178$ S = 1.381

Mo $K\alpha$ radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 14978 reflections $\theta = 1.66 - 26.34^{\circ}$ $\mu = 0.671 \text{ mm}^{-1}$ T = 160 (2) K Needle 0.44 \times 0.08 \times 0.08 mm Colourless

13 157 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.054$ $\theta_{\rm max} = 26.36^{\circ}$ $h = -12 \rightarrow 16$ $k = -23 \rightarrow 25$ $l = -25 \rightarrow 31$ Intensity decay: none

 $(\Delta/\sigma)_{\rm max} = 0.027$ $\Delta \rho_{\rm max}$ = 1.082 e Å⁻³ $\Delta \rho_{\rm min}$ = -2.127 e Å⁻³ Extinction correction: none

FIVE C12H8BO4 COMPLEX SALTS

788 parametersInternational Tables for Crystallography (Vol. C)Rh—P42.2929 (8)B—O11.472 (4)H atoms treated by aCrystallography (Vol. C) mixture of independentAbsolute structure: Flack (1983)Rh—P22.2969 (8)B—O41.475 (4)mixture of independentAbsolute structure: Flack (1983)Rh—P12.3071 (8)B—O31.492 (4)w = 1/[$\sigma^2(F_o^2) + 48.7217P$] where $P = (F_o^2 + 2F_c^2)/3$ Flack parameter = 0.01 (5) P4—Rh—P1P4—Rh—P293.30 (3)O1—B—O4113.0 (3)where $P = (F_o^2 + 2F_c^2)/3$ Flack parameters (Å, °) for (3) P4—Rh—P1P4—Rh—P293.30 (3)O1—B—O2104.8 (2)Table 3. Selected geometric parameters (Å, °) for (3) Rh—P32.377 (2) 2.377 (2)B—O41.468 (12)P4—Rh—P3155.77 (3)O4—B—O3112.0 (2)Rh—P42.391 (2) Rh—P4B—O31.479 (11) 4.408 (2)Rh—P12.408 (2) 2.377 (2)D=O41.478 (13)Compound (5)H1—Rh—P385 (5) P3—Rh—P4P3—Rh—C1190.24 (7) 9.2-Rh—P1Crystal dataMo Kα radiation A = 0.71073 ÅH1—Rh—P296.50 (7) P4—Rh—C1190.24 (7) 9.2-Rh—P1Mo Kα radiation A = 0.71073 ÅA = 0.71073 ÅP3—Rh—P297.69 (7) 9.69 (7)04—B—O3112.7 (8) 9.2-Rh—P1OrthorhombicCell parameters from 27854 reflectionsP4—Rh—P2168.57 (7) 9.69 (7)04—B—O3104.5 (7) 9.2-Rh—P1A = 1.98–28.23° 9.23 (10)A = 1.98–28.23° 9.23 (10)P4—Rh—P197.06 (8) 9.2-Rh—P102—	14 673 reflections		Scattering factors f	from	Table 4. Select	ed geometri	c parameters	(Å, °) for (4)
H atoms treated by aCrystallography (vol. C) $Rh-P2$ 2.2969 (8) $B-O4$ 1.475 (4)mixture of independentAbsolute structure: Flack $Rh-P3$ 2.3081 (8) $B-O2$ 1.492 (4) $w = 1/[\sigma^2(F_o^2) + 48,7217P]$ Flack parameter = 0.01 (5) $Rh-P1$ 2.3083 (8) $B-O3$ 1.492 (4) $w = 1/[\sigma^2(F_o^2) + 48,7217P]$ Flack parameter = 0.01 (5) $P4-Rh-P1$ 92.66 (3) $O1-B-O4$ 113.0 (3)where $P = (F_o^2 + 2F_c^2)/3$ Flack parameters (Å, °) for (3) $P4-Rh-P1$ 92.66 (3) $O1-B-O2$ 104.8 (2)Table 3. Selected geometric parameters (Å, °) for (3) $P4-Rh-P1$ 92.93 (3) $O1-B-O3$ 112.0 (2) $P2-Rh-P1$ 151.29 (3) $O4-B-O3$ 104.8 (2) $P2-Rh-P1$ 2.3071 (2) $B-O4$ 1.468 (12) $Rh-P3$ 2.377 (2) $B-O4$ 1.468 (12) $Rh-P4$ 2.391 (2) $B-O2$ 1.477 (12) $Rh-P4$ 2.391 (2) $B-O2$ 1.477 (12) $Rh-P4$ 8.5 (5) $P4-Rh-C11$ 90.24 (7) $Rh-P4$ 8.5 (5) $P4-Rh-C11$ 90.24 (7) $Rh-P4$ 8.5 (5) $P1-Rh-C11$ 90.24 (7) $Rh-P2$ 97.69 (7) $O4-B-O2$ 112.7 (8) $P3-Rh-P2$ 97.69 (7) $O4-B-O2$ 112.7 (8) $P4-Rh-P2$ 168.57 (7) $O4-B-O2$ 112.7 (8) $P4-Rh-P2$ 168.57 (7) $O4-B-O2$ 112.7 (8) $P4-Rh-P1$ 100 (5) $O2-B-O1$ 115.9 (7) $P4-Rh-P2$ 168.57 (7) $O4-B-O2$ 112.7 (8) $P4-Rh-P1$ <	788 parameters		International Ta	bles for	Rh—P4	2.2929 (8)	B-OI	1.472 (4)
Infiture of independentAbsolute structure. Flackinitial2.3083 (8)B=-031.492 (4)and constrained refinement(1983)Rh-P32.3083 (8)B=-031.492 (4) $w = 1/[\sigma^2(F_o^2) + 48.7217P]$ Flack parameter = 0.01 (5)P4-Rh-P293.30 (3)01-B04113.0 (3)where $P = (F_o^2 + 2F_c^2)/3$ Flack parameter = 0.01 (5)P4-Rh-P192.66 (3)01-B02104.8 (2)Table 3. Selected geometric parameters (Å, °) for (3)P4-Rh-P3155.77 (3)01-B03112.0 (2)Rh-P32.377 (2)B041.468 (12)P4-Rh-P393.04 (3)04-B031104.8 (2)Rh-P42.391 (2)B011.477 (12)P1-Rh-P392.93 (3)02-B03110.1 (2)Rh-P42.391 (2)B011.479 (11)Rh-P32.93 (3)02-B03110.1 (2)Rh-P488 (5)P4-Rh-C1194.64 (7)Crystal dataCrystal dataH1-Rh-P488 (5)P4-Rh-C1190.24 (7)[RhH ₂ (C ₃ H ₉ P) ₄](C ₁₂ H ₈ BO ₄)Mo Kα radiationN3-Rh-P297.69 (7)04-B-02112.7 (8)OrthorhombicCell parameters from 27854P4-Rh-P2168.57 (7)04-B-02112.7 (8)PbcareflectionsH1-Rh-P1100 (5)02-B-031104.5 (7)a = 13.4442 (7) Åθ = 1.98-28.23°P4-Rh-P197.70 (8)02-B-031104.8 (8)b = 18.7746 (10) Å $\mu = 0.783$ mm ⁻¹ P2-Rh-P183.54 (7)01-B-03111.4 (8)c = 24 5809 (12) ÅT = 160 (2) K	H atoms treated by a	a ndont	Abcolute structures	(VOI. C)	Rh—P2 Rh—P1	2.2969 (8)	B02	1.475 (4)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	and constrained re	finement	(1983)	ITACK	Rh—P3	2.3083 (8)	B-03	1.492 (4)
where $P = (F_o^2 + 2F_c^2)/3$ Table 3. Selected geometric parameters (Å, °) for (3) Rh—H1 1.27 (11) Rh—C11 2.513 (2) P4—Rh—P3 155.77 (3) 04—B—02 112.3 (3) P2—Rh—P3 155.77 (3) 04—B—03 112.0 (2) P2—Rh—P3 93.04 (3) 04—B—03 104.8 (2) P2—Rh—P3 93.04 (3) 04—B—03 104.8 (2) P2—Rh—P3 92.93 (3) 02—B—03 110.1 (2) Rh—P4 2.391 (2) B—04 1.468 (12) Rh—P4 2.391 (2) B—04 1.479 (11) Rh—P1 2.408 (2) B—03 1.504 (13) Compound (5) H1—Rh—P3 85 (5) P3—Rh—C11 94.64 (7) P3—Rh—P4 88 (5) P4—Rh—C11 94.64 (7) P3—Rh—P4 88 (5) P4—Rh—C11 94.64 (7) P3—Rh—P4 88 (5) P4—Rh—C11 90.24 (7) H1—Rh—P2 2.06 (3) 01—B—02 112.7 (8) P4—Rh—P3 92.93 (3) 02—B—03 110.1 (2) Rh—P4 2.391 (2) B—04 1.468 (12) Rh—P4 2.408 (2) B—03 1.504 (13) Compound (5) H1—Rh—P4 88 (5) P4—Rh—C11 90.24 (7) H1—Rh—P2 80 (5) P1—Rh—C11 80.32 (7) $M_r = 636.21$ $\lambda = 0.71073$ Å P3—Rh—P2 168.57 (7) 04—B—02 112.7 (8) P4—Rh—P1 100 (5) 02—B—01 111.7 (8) P4—Rh—P1 100 (5) 02—B—01 105.9 (7) P3—Rh—P1 174.84 (8) 04—B—03 104.5 (7) $a = 13.4442$ (7) Å $\theta = 1.98-28.23^{\circ}$ P4—Rh—P1 97.70 (8) 02—B—03 110.8 (8) $b = 18.7746$ (10) Å $\mu = 0.783$ mm ⁻¹ P2—Rh—P1 92.450 (2) K	$w = 1/[\sigma^2(F_c^2) + 48.$	7217 <i>P</i> 1	Flack parameter =	0.01 (5)	P4—Rh—P2	93.30 (3)	O1—B—O4	113.0 (3)
Table 3. Selected geometric parameters (Å, °) for (3)The second	where $P = (F_o^2 +$	$2F_c^2)/3$			P4-Rh-P1	92.66 (3)	O1BO2	104.8 (2)
Rable 5. Selected geomente parameters (n, r) (or (5) $p_2 = Rh - P_3$ $93.04(3)$ $04 = B = O_3$ $104.8(2)$ Rh - H11.27 (11)Rh - Cll2.313 (2) $P_1 = Rh - P_3$ $92.93 (3)$ $02 = B = O_3$ $110.1 (2)$ Rh - P32.377 (2) $B = O4$ 1.468 (12)Rh - P42.391 (2) $B = O2$ $1.477 (12)$ Rh - P22.403 (2) $B = O1$ $1.479 (11)$ Rh - P488 (5) $P_4 = Rh - C11$ $94.64 (7)$ $Crystal data$ H1 - Rh - P488 (5) $P_4 = Rh - C11$ $90.24 (7)$ $[RhH_2(C_3H_9P)_4](C_{12}H_8BO_4)$ Mo K α radiationP3 - Rh - P482.10 (7) $P2 - Rh - C11$ $90.24 (7)$ $[RhH_2(C_3H_9P)_4](C_{12}H_8BO_4)$ Mo K α radiationP3 - Rh - P297.69 (7) $O4 - B - O2$ $112.7 (8)$ OrthorhombicCell parameters from 27854P4 - Rh - P2168.57 (7) $O4 - B - O1$ $111.7 (8)$ $Pbca$ $Pbca$ reflectionsP3 - Rh - P1100 (5) $O2 - B - O3$ $110.8 (8)$ $b = 18.7746 (10)$ Å $\mu = 0.783 \text{ mm}^{-1}$ P4 - Rh - P197.70 (8) $O2 - B - O3$ $110.4 (8)$ $c = 24.5809 (12)$ Å $T = 160 (2)$ K	Table 3 Selected	l oeometri	c narameters (Å °) for (3)	P2—Rn—P1 P4—Rh—P3	151.29 (3)	04—B—02 01—B—03	112.0 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Rh—HI	1 27 (11)		2513(2)	P2—Rh—P3 P1—Rh—P3	93.04 (3) 92 93 (3)	04—B—03 02—B—03	104.8 (2) 110.1 (2)
Rh—P42.391 (2)B—O21.477 (12)Rh—P22.403 (2)B—O11.479 (11)Rh—P12.408 (2)B—O31.504 (13)Compound (5)H1—Rh—P385 (5)P3—Rh—C1194.64 (7)Crystal dataH1—Rh—P488 (5)P4—Rh—C11101.18 (7)[RhH2(C3H9P)_4](C12H8BO4)Mo K α radiationH1—Rh—P280 (5)P1—Rh—C1190.24 (7)[RhH2(C3H9P)_4](C12H8BO4)Mo K α radiationH1—Rh—P280 (5)P1—Rh—C1180.32 (7) $M_r = 636.21$ $\lambda = 0.71073$ ÅP3—Rh—P297.69 (7)04—B—O2112.7 (8)OrthorhombicCell parameters from 27854P4—Rh—P2168.57 (7)04—B—O1111.7 (8)PbcareflectionsP3—Rh—P1100 (5)02—B—O1105.9 (7) $a = 13.4442$ (7) Å $\theta = 1.98-28.23^{\circ}$ P4—Rh—P197.70 (8)02—B—O3110.8 (8) $b = 18.7746$ (10) Å $\mu = 0.783$ mm ⁻¹ P2—Rh—P183.54 (7)01—B—O3111.4 (8) $c = 24.5809$ (12) Å $T = 160$ (2) K	Rh—P3	2.377 (2)	B—04	1.468 (12)		<i>2.75</i> ()	02 0 0.	
Rh-P22.403 (2)B-O11.479 (11)Compound (5)Rh-P12.408 (2)B-O31.504 (13)Compound (5)H1-Rh-P385 (5)P3-Rh-C1194.64 (7)Crystal dataH1-Rh-P488 (5)P4-Rh-C11101.18 (7)[RhH2(C3H9P)4](C12H8BO4)Mo K\alpha radiationP3-Rh-P482.10 (7)P2-Rh-C1190.24 (7)[RhH2(C3H9P)4](C12H8BO4)Mo K\alpha radiationH1-Rh-P280 (5)P1-Rh-C1180.32 (7) $M_r = 636.21$ $\lambda = 0.71073$ ÅP3-Rh-P297.69 (7)04-B-O2112.7 (8)OrthorhombicCell parameters from 27854P4-Rh-P1100 (5)02-B-O1105.9 (7) $Pbca$ reflectionsH1-Rh-P1100 (5)02-B-O3104.5 (7) $a = 13.4442$ (7) Å $\theta = 1.98-28.23^{\circ}$ P4-Rh-P197.70 (8)02-B-O3110.8 (8) $b = 18.7746$ (10) Å $\mu = 0.783$ mm ⁻¹ P2-Rh-P183.54 (7)01-B-O3111.4 (8) $c = 24.5809$ (12) Å $T = 160$ (2) K	Rh—P4	2.391 (2)	B	1.477 (12)				
H1-Rh-P385 (5)P3-Rh-Cl194.64 (7)Crystal dataH1-Rh-P488 (5)P4-Rh-Cl1101.18 (7)P3-Rh-P482.10 (7)P2-Rh-Cl190.24 (7)Rh-P280 (5)P1-Rh-Cl190.24 (7)Rh-P297.69 (7)04-B-O2P4-Rh-P2168.57 (7)04-B-O2P4-Rh-P1100 (5)02-B-O1P3-Rh-P1100 (5)02-B-O1P3-Rh-P1174.84 (8)04-B-O3P4-Rh-P197.70 (8)02-B-O3P4-Rh-P197.70 (8)02-B-O3P4-Rh-P197.70 (8)02-B-O3P4-Rh-P197.70 (8)02-B-O3P4-Rh-P197.70 (8)02-B-O3P4-Rh-P197.70 (8)02-B-O3P4-Rh-P197.70 (8)02-B-O3P4-Rh-P197.70 (8)02-B-O3P4-Rh-P197.70 (8)02-B-O3P4-Rh-P197.70 (8)02-B-O3P4-Rh-P183.54 (7)01-B-O3P4-Rh-P183.54 (7)01-B-O3P4-Rh-P197.70 (8)02-B-O3P4-Rh-P197.70 (Rh—P2 Rh—P1	2.403 (2)	B-01 B-03	1.479 (11)	Compound (5)			
H1RhP488 (5)P4RhC11101.18 (7)Image: C_1P_4 (C_1P_4) = 0.12 (C_1P_	H1—Rh—P3	85 (5)	P3—Rh—C11	94.64 (7)	Crystal data			
P3-Rh-P4 82.10 (7) P2-Rh-Cl1 90.24 (7) $[RnH_2(C_3H_9P_4](C_12H_8BO_4)]$ Mo Ka radiation H1-Rh-P2 80 (5) P1-Rh-Cl1 80.32 (7) $M_r = 636.21$ $\lambda = 0.71073$ Å P3-Rh-P2 97.69 (7) 04-B-02 112.7 (8) Orthorhombic Cell parameters from 27854 P4-Rh-P2 168.57 (7) 04-B-01 111.7 (8) Pbca reflections P3-Rh-P1 100 (5) 02-B-01 105.9 (7) $a = 13.4442$ (7) Å $\theta = 1.98-28.23^{\circ}$ P4-Rh-P1 97.70 (8) 02-B-03 110.8 (8) $b = 18.7746$ (10) Å $\mu = 0.783$ mm ⁻¹ P2-Rh-P1 83.54 (7) 01-B-03 111.4 (8) $c = 24.5809$ (12) Å $T = 160$ (2) K	H1—Rh—P4	88 (5)	P4-Rh-Cll	101.18 (7)			Ma Kanadiat	
H1RhP2 $80(3)$ P1RhP1 $80(3)$ P1Rh-P1 $80(3)$ P1Rh-P1 $80(3)$ P1Rh-P1 $80(3)$ P1Rh-P1 $112.7(8)$ Orthorhombic Cell parameters from 27854 P4RhP1 100(5) 02B01 111.7(8) Pbca reflections P3RhP1 174.84(8) 04B03 104.5(7) $a = 13.4442(7)$ Å $\theta = 1.98-28.23^{\circ}$ P4RhP1 97.70(8) 02B03 110.8(8) $b = 18.7746(10)$ Å $\mu = 0.783$ mm ⁻¹ P2RhP1 83.54(7) 01B03 111.4(8) $c = 24.5809(12)$ Å $T = 160(2)$ K	P3—Rh—P4	82.10(7)	P2—Rh—Cll	90.24 (7)	$[KnH_2(C_3H_9P)_4](C_3H_9P)(C_3H_9P)(C_3H_9P)(C_3H_9P)(C_3H_9P)(C_3H_9P)(C_3$	$_{12}\Pi_8 BO_4)$	MO $\mathbf{K}\alpha$ radial	Å
P4-Rh-P2 168.57 (7) 04-B-O1 111.7 (8) Officition formation cert parameters from 27834 H1-Rh-P1 100 (5) 02-B-O1 105.9 (7) Pbca reflections P3-Rh-P1 174.84 (8) 04-B-O3 104.5 (7) $a = 13.4442$ (7) Å $\theta = 1.98-28.23^{\circ}$ P4-Rh-P1 97.70 (8) 02-B-O3 110.8 (8) $b = 18.7746$ (10) Å $\mu = 0.783$ mm ⁻¹ P2-Rh-P1 83.54 (7) 01-B-O3 111.4 (8) $c = 24.5809$ (12) Å $T = 160$ (2) K	P3 - Rh - P2	80 (5) 97.69 (7)	O4 - B - O2	112.7 (8)	$M_r = 0.00.21$		A = 0.71073	A mc from 27851
H1-Rh-P1100 (5)02-B-O1105.9 (7) $T b t a$ TenectionsP3-Rh-P1174.84 (8)04-B-O3104.5 (7) $a = 13.4442$ (7) Å $\theta = 1.98-28.23^{\circ}$ P4-Rh-P197.70 (8)02-B-O3110.8 (8) $b = 18.7746$ (10) Å $\mu = 0.783$ mm ⁻¹ P2-Rh-P183.54 (7)01-B-O3111.4 (8) $c = 24.5809$ (12) Å $T = 160$ (2) K	P4—Rh—P2	168.57 (7)	04B01	111.7 (8)	Phea		reflections	15 HOIII 27854
P3_Rh_P1 174.84 (8) $04-B=03$ $104.5 (7)$ $u = 13.442 (7)$ $v = 1.96-26.25$ P4_Rh_P1 97.70 (8) $02-B=-03$ $110.8 (8)$ $b = 18.7746 (10)$ A $\mu = 0.783$ mm^{-1} P2_Rh_P1 83.54 (7) $01-B=-03$ $111.4 (8)$ $c = 24.5809 (12)$ A $T = 160 (2)$ K	H1—Rh—PI	100 (5)	02—B—01	105.9(7)	a = 134442 (7) Å		$A = 1.98 - 28^{-2}$	73°
P2-Rh-P1 83.54 (7) O1-B-O3 111.4 (8) $c = 245809(12)$ Å $T = 160(2)$ K	P3—Rn—P1 P4—Rh—P1	97.70 (8)	04 - B - 03 02 - B - 03	104.5 (7)	b = 18.7746 (10)	Å	u = 0.783 mm	n^{-1}
$\lambda = E (\alpha \beta $	P2—Rh—P1	83.54 (7)	01—B—03	111.4 (8)	c = 24.5809(12)	Å	T = 160(2)	
H1-Rh-C11 171 (5) $V = 6204.5$ (6) Å ³ Block	H1—Rh—C11	171 (5)			V = 6204.5 (6) Å ³	5	Block	-
Compound (4) $Z = 8$ $0.40 \times 0.38 \times 0.16 \text{ mm}$	Compound (4)				Z = 8		0.40×0.38	× 0.16 mm
$D_x = 1.362 \text{ Mg m}^{-3} \qquad \text{Colourless}$	Crystal data				$D_x = 1.362 \text{ Mg m}$	-3	Colourless	
D_m not measured $[Rb(C_2H_0P)_4](C_{12}H_0RO_4)$ Mo K a radiation		BOA	Mo $K\alpha$ radiation		D_m not measured			
$M_r = 634.19$ $\lambda = 0.71073$ Å	$M_r = 634.19$	504)	$\lambda = 0.71073 \text{ Å}$					
Monoclinic Cell parameters from 8136 Data collection	Monoclinic		Cell parameters fro	om 8136	Data collection			
$P2_1/n$ reflections Bruker SMART CCD 7303 independent reflections	$P2_1/n$		reflections		Bruker SMART C	CD	7303 indepen	dent reflections
$a = 9.7315$ (9) Å $\theta = 2.25 - 27.98^{\circ}$ diffractometer 5904 reflections with	a = 9.7315 (9) Å		$\theta = 2.25 - 27.98^{\circ}$		diffractometer		5904 reflection	ons with
$b = 29.559$ (3) Å $\mu = 0.795$ mm ⁻¹ ω rotation with narrow $I > 2\sigma(I)$	b = 29.559 (3) Å		$\mu = 0.795 \text{ mm}^{-1}$		ω rotation with na	arrow	$I > 2\sigma(I)$	
$c = 10.8716 (10) \text{ Å}$ $T = 160 (2) \text{ K}$ frames $R_{\text{int}} = 0.102$	c = 10.8716 (10) Å		T = 160 (2) K		frames	•••••	$R_{\rm int} = 0.102$, ,
$\beta = 102.541$ (2)° Block Absorption correction: $\theta_{max} = 28.39$	$\beta = 102.541 (2)^{\circ}$		Block	_	Absorption correc	LION:	$\theta_{\rm max} = 28.39^{\circ}$	17
$V = 3052.7 (5) \text{ Å}^3$ 0.32 × 0.14 × 0.12 mm intuiti-scali (5ADAB5, $h = -10 \rightarrow 17$	$V = 3052.7 (5) \text{ Å}^3$		$0.32 \times 0.14 \times 0.1$	2 mm	Sheldrick 1007	$\mathcal{D}\mathcal{A}\mathcal{D}\mathcal{S},$	$h = -10 \rightarrow 1$	17
Z = 4 Orange $31100000000000000000000000000000000000$	Z = 4	,	Orange		T = 0.714 T) - 0.894	$k = -24 \rightarrow 1$.2
$D_x = 1.380 \text{ Mg m}^{-3}$ 36.970 measured reflections Intensity decay: none	$D_x = 1.380 \text{ Mg m}^{-1}$	3			$1_{min} = 0.714, T$ 36.970 measured	max = 0.094	$I = -23 \rightarrow 3$ Intensity dec:	av: none
D_m not measured C_{max} intensity decay. Note	D_m not measured				50 770 measured	reneerions	Intensity deer	ly. none
Data collection Refinement	Data collection				Refinement			
Bruker SMART CCD 6970 independent reflections Refinement on F^2 $(\Delta/\sigma)_{max} = 0.001$	Bruker SMART CC	D	6970 independent	reflections	Refinement on F^2		$(\Delta/\sigma)_{\rm max} = 0$	0.001
diffractometer 5320 reflections with $R[F^2 > 2\sigma(F^2)] = 0.088$ $\Delta \rho_{\text{max}} = 0.607 \text{ e} \text{ Å}^{-3}$	diffractometer		5320 reflections w	ith	$R[F^2 > 2\sigma(F^2)] =$: 0.088	$\Delta \rho_{\rm max} = 0.60$	$7 e Å^{-3}$
$ω$ rotation with narrow $I > 2σ(I)$ $wR(F^2) = 0.190$ $Δρ_{min} = -0.782 \text{ e Å}^{-3}$	ω rotation with narr	ow	$I > 2\sigma(I)$		$wR(F^2) = 0.190$		$\Delta \rho_{\rm min} = -0.7$	782 e Å ⁻³
frames $R_{\text{int}} = 0.045$ $S = 1.448$ Extinction correction:	frames		$R_{\rm int} = 0.045$		S = 1.448		Extinction co	rrection:
Absorption correction: $\theta_{max} = 28.42^{\circ}$ 7303 reflections SHELXTL (Sheldrick,	Absorption correction	on:	$\theta_{\rm max} = 28.42^{\circ}$		7303 reflections		SHELXTL	(Sheldrick,
multi-scan (SADABS; $h = -12 \rightarrow 12$ 359 parameters 1994)	multi-scan (SADA	BS;	$h = -12 \rightarrow 12$		359 parameters		1994)	<u>.</u>
Since (1997) $k = -39 \rightarrow 30$ H atoms treated by a Extinction coefficient:	Sneldrick, 1997	0.000	$k = -39 \rightarrow 30$		H atoms treated b	ya	Extinction co	efficient:
$T_{\min} = 0.852$, $T_{\max} = 0.909$ $l = -11 \rightarrow 14$ mixture of independent 0.00012 (b)	$I_{\rm min} = 0.052, I_{\rm max}$	x = 0.909	$l = -11 \rightarrow 14$ Intensity decay: no	ne	mixture of inde	pendent	0.00012 (6) tors from
$w = 1/[\sigma^2(F^2)] + 37.8822P$ International Tables for	18 027 measured fer	licetions	intensity decay. It	ле	$w = 1/[\sigma^2(F^2) + 1]$	37 8822P	Internation	al Tables for
Refinement $P = (F_0^2 + 2F_c^2)/3$ Crystallography (Vol C)	Refinement				where $P = (F_0^2)^2$	$(2 + 2E_c^2)/3$	Crystallog	ranhy (Vol C)
Refinement on F^2 $(\Lambda/\sigma) < 0.001$	Refinement on F^2		$(\Lambda/\sigma) > 0.001$		(- (/	. / -		
$\frac{R[F^2 > 2\sigma(F^2)] = 0.037}{A\rho_{max} = 0.625 \text{ e}^{-3}}$	$R[F^2 > 2\sigma(F^2)] = 0$	037	$\Delta \rho_{max} = 0.625 \rho^2$	-3				
$wR(F^2) = 0.082 \qquad \qquad \Delta \rho_{min} = -0.555 \text{ e } \text{\AA}^{-3} \qquad \qquad \text{Table 5 Selected geometric parameters } (\text{\AA}^{\circ}) \text{ for } (5)$	$wR(F^2) = 0.082$		$\Delta \rho_{\rm min} = -0.555 {\rm e}$	Å-3	Table 5 Selec	ted geometri	ic parameters	$(\text{\AA}, \circ)$ for (5)
S = 1.053 Extinction correction: DE LI 149 (5) DE D2 2343 (7)	S = 1.053		Extinction correcti	on:		1 48 (5)		·, , jor (e)
$\begin{array}{c} 6970 \text{ reflections} \\ \hline SHELXTL (Sheldrick, Rh-H2 1.49 (5) B-O4 1.475 (10) 1.475 (10) B-O4 1.475 (10) $	6970 reflections		SHELXTL (Shel	drick,	Rh—H2	1.40 (5)	B04	1.475 (10)
320 parameters 1994) Rh—P4 2.302 (2) B—O1 1.476 (10	320 parameters		1994)	,	Rh—P4	2.302 (2)	B01	1.476 (10)
H-atom parameters Extinction coefficient: $\begin{array}{ccc} Rh-P1 & 2.304 (2) & B-O3 & 1.482 (10) \\ Rh-P2 & 2.351 (2) & B-O2 & 1.502 (10) \end{array}$	H-atom parameters		Extinction coeffici-	ent:	Кh—Р1 Rh—Р2	2.304 (2) 2.351 (2)	в—03 в—02	1.482 (10) 1.502 (10)

constrained $w = 1/[\sigma^2(F_o^2) + (0.0293P)^2]$ + 2.4605*P*] where $P = (F_o^2 + 2F_c^2)/3$ 0.00087 (14)

Scattering factors from

International Tables for

Crystallography (Vol. C)

88 (4) H2-Rh-P3 80 (3) 80 (3) P4-Rh-P3 P1—Rh—P3 P2—Rh—P3

87 (3)

172 (3)

99.22 (7) 100.92 (7) 99.89 (7)

H1-Rh-H2

H1-Rh-P4

H2—Rh—P4 H1—Rh—P1

H2-Rh-Pl	78 (3)	O4—B—O1	112.9 (6)
P4—Rh—P1	154.56 (9)	O4—B—O3	105.3 (6)
H1—Rh—P2	176 (3)	O1—B—O3	111.9 (6)
H2—Rh—P2	89 (3)	O4—B—O2	110.9 (6)
P4—Rh—P2	96.16 (9)	O1—B—O2	104.0 (6)
P1—Rh—P2	95.53 (8)	O3—B—O2	112.1 (6)
H1_Rh_P3	83 (3)		

For compounds (2)–(5), the data collection nominally covered over a hemisphere of reciprocal space, by a combination of three sets of exposures; each set had a different φ angle for the crystal and each exposure covered 0.3° in ω . Coverage is essentially complete to at least 25° in θ .

H atoms were placed geometrically and refined with a riding model (including free rotation about C—C bonds), and with U_{iso} constrained to be 1.2 (1.5 for methyl groups) × U_{eq} of the carrier atom, except for hydrido ligands, which were freely refined with individual U_{iso} in all cases. The highest residual electron-density peaks were close to metal atoms. The residual electron-density peak with a height > 1 e Å⁻³ in the structure of (2) lies between H1 (1.06 Å) and Cl3 in an adjacent solvent molecule (2.22 Å); in the structure of (3), the highest peak is 0.94 Å from Rh. All other peaks are < 1 e Å⁻³ in height.

In the structure of (1), disorder was resolved for atoms C4, C6 and C12 of the phosphine–ethyl groups, and refinement included alternative positions with relative occupancies of 0.879:0.121 (18), 0.64:0.36 (2) and 0.702:0.298 (15), respectively; because of the low occupancy of the second component of C4 (C4X), this atom was refined with an isotropic displacement parameter. The C—C bonds of the disordered groups were weakly restrained to be approximately equal.

In the structure of (5), disorder was refined for the methyl groups of the P3 phosphine (C7, C8 and C9), with relative occupancies of 0.573:0.427 (12) for two alternative orientations. Restraints were not required in the refinement of this disorder, but the two Rh—H bonds were restrained to be approximately equal.

No restraints were applied in the refinement of the other structures, except for an 'approximately isotropic' restraint for atoms C8, C33 and C39 of (3). Elongated displacement ellipsoids for some atoms [particularly C10, C11 and C12 in (5)], some relatively poor geometry within ligands and the rather high refinement residuals for (3) and (5), indicate probable further disorder in the structures of (1), (3) and (5), but this could not be resolved successfully and additional restraints brought no significant improvement.

Data collection: *DIF*4 (Stoe & Cie, 1988) for (1), *SMART* (Siemens, 1995) for all other compounds. Cell refinement: *DIF*4 for (1), local programs for all other compounds. Data Reduction: local programs for (1), *SAINT* (Siemens, 1995) for all other compounds. For all compounds, program(s) used to solve structure: *SHELXTL* (Sheldrick, 1994); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and local programs.

We thank EPSRC (UK), NSERC (Canada), The Royal Society (UK), and the Universities of Newcastle upon Tyne and Bristol for financial support.

References

- Allen, F. H. & Kennard, O. (1993). Chem. Des. Autom. News, 8, 31-37.
- Behr, A., Herdtweck, E., Herrmann, W. A., Keim, W. & Kipshagen, W. (1986). J. Chem. Soc. Chem. Commun. pp. 1262-1263.
- Behr, A., Herdtweck, E., Herrmann, W. A., Keim, W. & Kipshagen, W. (1987). Organometallics, 6, 2307-2313.

Breit, B., Winde, R. & Harms, K. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 2681–2682.

- Brown, J. M., Evans, P. L., Maddox, P. J. & Sutton, K. H. (1989). J. Organomet. Chem. 359, 115-125.
- Burgess, K., van der Donk, W. A., Westcott, S. A., Marder, T. B., Baker, R. T. & Calabrese, J. C. (1992). J. Am. Chem. Soc. 114, 9350–9359.
- Clark, G. R., Skelton, B. W. & Waters, T. N. (1975). J. Organomet. Chem. 85, 375-394.
- Clark, G. R., Skelton, B. W., Waters, T. N. & Davies, J. E. (1987). Acta Cryst. C43, 1708-1709.
- Clegg, W., Scott, A. J., Lawlor, F. J., Norman, N. C., Marder, T. B., Dai, C. & Nguyen, P. (1998). Acta Cryst. C54, 1875–1880.
- Cowie, M. & Dwight, S. K. (1979). Inorg. Chem. 18, 1209-1214.
- Dai, C., Robins, E. G., Scott, A. J., Clegg, W., Yufit, D. S., Howard, J. A. K. & Marder, T. B. (1998). Chem. Commun. pp. 1983–1984.
- Debaerdemaeker, T. (1977). Cryst. Struct. Commun. 6, 11-14.
- Ferguson, G., Hampden-Smith, M. J., Dhubhghaill, O. N. & Spalding, T. R. (1988). Polyhedron, 7, 187–193.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Greenwood, N. N., McDonald, W. S., Reed, D. & Staves, J. (1979). J. Chem. Soc. Dalton Trans. pp. 1339-1342.
- He, X.-M. & Hartwig, J. F. (1996). J. Am. Chem. Soc. 118, 1696– 1702.
- Jones, R. A., Real, F. M., Wilkinson, G., Galas, A. M. R., Hursthouse, M. B. & Malik, K. M. A. (1980). J. Chem. Soc. Dalton Trans. pp. 511-518.
- Lundquist, E. G., Streib, W. E. & Caulton, K. G. (1989). Inorg. Chim. Acta, 159, 23-27.
- Marder, T. B., Zargarian, D., Calabrese, J. C., Hershovitz, T. H. & Milstein, D. (1987). J. Chem. Soc. Chem. Commun. pp. 1484–1485.

Milstein, D., Calabrese, J. C. & Williams, I. D. (1986). J. Am. Chem. Soc. 108, 6387-6389.

- Nietlispach, D., Bakhmutov, V. I. & Berke, H. (1993). J. Am. Chem. Soc. 115, 9191–9195.
- Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-83.
- Reibenspies, J. H. & Darensbourg, D. J. (1993). Acta Cryst. C49, 141-142.
- Sheldrick, G. M. (1994). SHELXTL. Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SADABS. Program for Scaling and Correction of Area Detector Data. University of Göttingen, Germany.
- Siemens (1995). SMART and SAINT. Area Detector Control and Integration Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Stevens, R. C., Bau, R., Milstein, D., Blum, O. & Koetzle, T. F. (1990). J. Chem. Soc. Dalton Trans. pp. 1429–1432.
- Stoe & Cie (1988). DIF4. Diffractometer Control Program. Version 7.04. Stoe & Cie, Darmstadt, Germany.
- Thorn, D. L. & Tulip, T. H. (1982). Organometallics, 1, 1580-1586.
- Westcott, S. A., Blom, H. P., Marder, T. B., Baker, R. T. & Calabrese, J. C. (1993). Inorg. Chem. 32, 2175–2182.
- Westcott, S. A., Taylor, N. J., Marder, T. B., Baker, R. T., Jones, N. J. & Calabrese, J. C. (1991). J. Chem. Soc. Chem. Commun. pp. 304–305.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: LN1074). Services for accessing these data are described at the back of the journal.